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Abstract: A method is presented which allows all possible mechanisms with a specified number of elementary reaction steps 
to be drawn a priori as simple networks for a given overall reaction. For computer assisted organic synthesis design, the 
method gives the pathways between reagents and synthetic target. The networks and their more compact skeletons, drawn 
simply from the rules given, are classified in regards to the catalytic, feedback loops, etc., they contain. Steady states, their 
stabilities, rate laws, or yields depend on these few possible network skeleton types. This method systematizes the various 
mechanisms, proposed in chemical and in enzyme kinetics, yielding them and many new ones a priori for broad classes of 
overall reaction types. Definite numbers of intermediates, catalysts, and precursors that are possible for any type of mecha­
nism or synthetic pathway are predicted once the number of steps is given and vice versa. Methods are illustrated on chain 
reactions, enzyme mechanisms with inhibition, some organic syntheses, biochemical electron transport, and oxidative phos­
phorylation. Biochemical pathways and laboratory syntheses lead to very different network skeleton types reflecting the reg­
ulation requirements of the former. 

I. Objectives and the Problem 
A chemical reaction network is a set of coupled reaction 

steps. The steps are the "elementary" reactions in a mecha­
nism, the synthetic steps in an organic synthesis, and the en­
zymatic or other steps in a metabolic cycle. The steps are 
coupled by the occurrence, in their reactant and product 
pools, of chemical species common to two or more steps. 

In all such networks, the steps add up to an overall reac­
tion (OVR). The steps are stoichiometric, as is, therefore 
the OVR. 

The analysis below, and in subsequent papers, of net­
works will be useful: (a) for design, particularly computer 
assisted, of organic synthesis; (b) in finding all the possible 
mechanisms given an OVR, and the corresponding gross 
rate laws; and (c) for studying the steady states, yields, and 
control and regulation characteristics of kinetic, organic, or 
biochemical mechanisms or pathways. 

Organic Synthetic Pathways. Given a target organic mol­
ecule to be synthesized and common organic or industrial 
reagents available, what are the possible pathways |P) be­
tween the start and finish? The first thing we find is that if 
we specify only the number, p, of individual synthetic steps 
to make the JP), but not the actual steps, there are still a 
limited number of pathways. There are also only a limited 
number of intermediate species, (a) precursors, that can 
occur. 

We shall broadly classify all the (Pj and find general rela­

tions between p and a. This will depend only on the types of 
OVR, not even on the actual species involved. In fact just 
the specification of p alone is sufficient to generate all the 
possible types of networks and the possible a numbers. 

The analysis would aid computer design of organic syn­
thesis, both in the empirical "reactions bank" approach2" 
and in the a priori "tree generation" approach. In the latter 
approach of Ugi and coworkers,2b one works backwards 
from the target (plus a reasonable by-product pool), with 
bond scissions and makings, to generate a growing down­
ward tree of precursors. 

The network analysis and approach of the present paper 
narrows down the problem by specifying both ends of the 
synthesis, reagents and target. Then from the broad a priori 
essentially topological pathway classification, further guide­
lines are obtained before the computer stage, by concentrat­
ing on only some types of desirable pathway classes. 

It is interesting that biochemical synthesis pathways are 
generally of different topological type than the organic syn­
thesis pathways for the same end product (see section X). 

Kinetics. All Possible Mechanisms for a Given Overall 
Reaction Type. Given an overall reaction (OVR) and its ob­
served macroscopic rate law, it has always been a problem 
to come up with the right mechanism, to know which of sev­
eral mechanisms that may have been proposed by various 
workers to use, and, particularly, to know a priori if there 
are other possible mechanisms, which ones, how many? The 
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net result is that presently, finding mechanisms involves 
guessing and trial and error. The same difficulty exists also 
in the enzymatic mechanisms in biochemistry. 

In the present paper we find that specifying just the num­
ber, p, of mechanistic elementary reactions a finite number 
of and certain types of mechanisms (networks) are ob­
tained. These types allow only certain numbers of interme­
diate species, catalysts, etc., possible in a mechanism. For 
each type one also gets only certain general types (like A —• 
B, A + B -» C + D, etc.) of overall reactions OVR, given 
just the number of steps p. 

The treatment of this paper classifies and systematizes, in 
addition to all mechanisms of a given OVR, all mechanisms 
coming also from different OVR. The inverse problem of 
giving a specific, actual OVR, to find all its mechanisms, 
though a more restrictive one is treated in greater detail in 
other papers.1 

Once the networks or mechanisms are written down, each 
leads to an exact rate law expression. These rate laws are in 
general nonlinear and difficult to integrate; however, some 
general features of them and their approximate solutions 
may also be explored with the present network theory. 

Finally, given the networks, one may also explore their 
steady states (whether they exist, how many, etc.) and the 
stability characteristics of such states. The stability charac­
teristics are important in industry, in chemical reactor con­
trol, and in biochemistry in metabolic control and regula­
tion, biological clocks, etc. This last is of course a current, 
active area of research.4-5 In one of our subsequent papers 
we shall use the network theory of this paper in that direc­
tion too, obtaining a simple procedure to test the stability of 
mechanistic steadv states. 

Given some possible networks, synthetic pathways, or 
mechanisms, one still has the problem of knowing which 
paths are energetically more favorable than others. Here 
the problems are quantum mechanical, specific to the actu­
al species involved. Each pathway and each elementary step 
corresponds to a quantum mechanical potential energy sur­
face6 U(\R\), with \R\ the relative coordinates of all the 
atoms in the reactant, intermediate, product, etc., set. It 
would be costly, tedious, and not particularly useful to cal­
culate point by point on the computer each possible path­
way's U(\R\). Instead one needs qualitative but rigorously 
founded quantum methods for selecting pathways. Impor­
tant progress has been made in that direction, though the 
methods used so far have been confined mostly to symmetry 
situations,7 or to special systems (like pericyclic reactions)8 

(see, however, the approach of ref 9 which does not require 
symmetry). 

In the present work we deal only with the topological 
pathway and connectivity aspects of chemical reactions net­
works. This delineates properties dependent on types of net­
works, rather than on specific energetics of each passage. 
The quantum aspects, the energetic pathway selection as­
pects, are dealt with in a separate work of this writer where 
a new algebraic approach for organic molecules has been 
under development for the past several years.10 

II. A Chemical Reaction Network. Species Mole Lines, Line 
Blocks, Skeletons 

We first draw a "network" representing the given mecha­
nism or pathway. 

How to Draw the Network. Consider, for example, the 
Henry-Michaelis-Menten mechanism for enzyme kinetics. 

(I) E + S 
(II) (ES) -

- (ES) 
E + P (Ml) 

OVR S 

arrow (•+•). The elementary steps are labeled with roman 
numerals. 

Definitions: In drawing a network each mole of each 
species in each reaction step (O is shown by a solid line 
( ). Each reaction (each arrow —•) is shown by a wiggly 
line (~~) but with no direction to it (see below). 

Mechanism M consists of p steps [1, 2, . . , p|. The net­
work has therefore p wiggly lines. 

Example Ml: The network of Ml is 

(ES) 

Or, drawn more compactly 

( E S i 

(Nl) 

(Nl') 

Note that in (Ml ) the same one mole of (ES) is involved 
in steps I and II, so there is only one segment of (ES) solid 
line in ( N l ) . The same is true of E. 

Direction of Reaction Arrows. A network shows mainly 
how the species mole lines are connected together. Whether 
an elementary step in a mechanism means only forward 
reaction, forward and back reactions, or equilibrium does 
not affect the topology. For a single reaction step 

A + B —* C 
or 

A + B -— C (M2) 
or 

A + B = C 
all have the same network 

(N2) 

However, depending on how the steps are added together 
the overall reaction (OVR) changes, as do the number of 
mole lines. The connectivity among species displayed by the 
network is still unaffected. 

Consider again, for example, (Ml ) , but with (II) re­
versed. 

(I) 
(IT) 

(ES) 
(ES) 

OVR' 2E + S + P 2(ES) 
(MIt) 

The network now is 

(ESi 

(ES) 
(NIt) 

It still shows the same pattern, but E and (ES) have now 
developed "kinks". A kink shows more than 1 mol of a 
species is involved in the overall reaction (OVR). In (NIt ) 
we have 5-"'~~«£showing the 2E in the OVR. 

The display of arrows on wiggly lines in ( N l ) is unneces­
sary as 

4 
but (Nl') 

The overall reaction (OVR) is shown with a boldface /~~*-
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would be incorrect as it would imply a network with kinks, 
i.e., 

£>-£>-£> (NIt') 

The crucial difference between ( N l ) and (NI t ) is, in 
( N l ) there is a circulation around the closed loop, while in 
(N 11) arrows meet head on and lead to kinks. 

Definition: If in a network arrows can be placed on all 
wiggly lines in such a way that they all lead to full circula­
tions around all loops and free flows along open paths, then 
the network will be called "laminar". If there is no such 
arrow assignment possible, i.e., if some arrows meet head on, 
the network is "turbulent" and depending on the flows some 
species lines develop kinks. 

Corollary: In the laminar network's OVR stoichiometric 
coefficients I c,j are unity. 

Si/jBj = O 

! > , € { ! , - 1 } 
(D 

A network is a "turbulent" network if there is more than 
one mole line of a species in it, as in eq NIt ' . Multiple mole 
lines of the same species in a network can also arise from 
other causes: (a) if an elementary reaction has some stoi­
chiometric coefficient |i»,j > 1 and/or (b) if the same 
species occurs on the same sides ("reactant" side is left of 
arrow) of more than one elementary step. 

Case (a) occurs for example in the chain mechanism de­
composition of acetaldehyde, as the step 

2CH3 -

CH3 

C 2 H 6 

C,HB 

(M'3) 

(N'3) 

The full mechanism has also a case (b) in it 

(I) CH3CHO —" CH3 + CHO 

(II) CH3CHO + CH3 —* CH4 + CO + CH3 (M3) 

(III) 2CH3 —*• C2H6 

with the network 

(CH3CHO) 
(N3) 

Note that wherever several mole lines of the same 
species occur (as in CH 3 in (N3)) they are tied together at 
a species vertex. 

The mole lines of a species are tied together because in 
the entire mechanism and in the rate of the overall reaction 
there is just one concentration of that species which occurs. 
All mole lines affect that concentration, hence the rate. 
Thus the network ought to display this connectivity though 
mole lines of that species may have been generated in dif­
ferent steps and independently. 

Only in the case of a batch, stepwise organic synthesis, 
where different synthetic steps are carried out in different 
vessels, the same by-product mole lines coming off in differ­
ent batch steps would not need to be tied to a species vertex. 
Each mole line there would act as if it were a distinct 
species (like different isotopic ones). Thus, for the organic 

synthesis batch pathways case, we have an option but we 
may nevertheless wish to stick to species vertices to make 
the network applicable also to an all in one vessel, e.g., con­
tinuous operation synthesis as in an engineering or cellular 
use of the same steps. 

Definition: "Strictly Laminar Network". If the stoichio­
metric coefficients both in the OVR and in each elementary 
step are all unity, and if only one mole line of a species oc­
curs in the entire mechanism, we shall refer to the network 
as "strictly laminar" 

(Ml ) is an.example of a strictly laminar network. (Note 
again that a common intermediate between steps (ES) in 
(Ml ) is counted as a single mole line.) 

In some of our other papers,3 a distinction is made be­
tween laminar and turbulent networks in developing certain 
aspects of the theory. The present paper, however, is gener­
al, covering both laminar and turbulent networks. 

Line Blocks and Skeletons. A network, a mechanism, is a 
set of p relations between pools of species moles. The set of 
species moles is made up of a number of mutually exclusive 
subsets. Whenever one or more species are in common be­
tween two pools, the two pools belong in the same subset. 

If we designate the left (L) and right (R) sides of each 
reaction step as pools, we have a mechanism which looks 
like that in Figure 1. The species lines in the network belong 
in the same pool, if they are joined either at some species 
vertex or come together at a terminal of a reaction wiggly 
line. 

Definition: A set of species mole lines which are thus 
joined together is a line block. 

The crucial aspects of a network, whether turbulent or 
laminar, involve how line blocks (e.g., a, (}, 7, 5 in Figure 1) 
are interconnected by the p reaction wiggly lines. These fea­
tures of a network can be shown by drawing a more con­
densed picture: the skeleton (S) of a network (N). 

Definition: Each line block of an N is shown as a "dot 
point" (•) and each wiggly line of N as a solid line ( ). 
Then N gets compressed into a "skeleton". For example, 
Figure 1 becomes 

Other N's given above become: 

(a) .S 

E (ES) 

(b) 
(Nl) 

~» yg 

_• AE 

(NIt) 

<o 

<o 

(Sl) 

(SIt) 

(O 

(S3) 

(N3) 

Note that (1) while the network may be rather intricate 
as in (N3), it leads to a very simple skeletal picture (S3), 
where reaction loops, etc., are immediately clear. (2) Re­
gardless of the direction of reaction arrows and whether the 
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(I) 

(H) 

(m) 
Figure 1. Overlapping of reactant (L) and product ( (R) species pools 
of reaction steps to form a network. 

N is laminar or turbulent we get the same skeleton (Sl and 
SI t ) . (3) Several quite different networks may lead to the 
same skeleton, making their inherent similarity in regard to 
their feedback aspects, presence of catalysts, and the nature 
of the coupling between the reactions apparent while those 
may have been obscure in the intricate looking networks. 

III. Skeletons of Some Basic Mechanism Types. Nature of 
Coupling Due to Common Intermediates, Catalysts, Etc. 

So as to develop a feeling for what types of mechanisms a 
given skeleton corresponds to, we examine first some basic 
mechanism and pathway types. 

Consecutive reactions 

(M4) 

(N4) 

(S4) 

(M5) 

(85) 

(I) 
(II) 

A 
C 

+ 
+ 

B 
F 

—•-
— -

C 
G 

+ 
+ 

D 
H 

The same type results from the simpler 

A — • B — * C 

Skeletons in the form of linear chains 

result from simple consecutive reactions. 
We get trees for combinations and branchings of consec­

utive reactions, e.g., 

(I) A + B — C + D 
(II) C — - F + G 

(III) F —» K + L 
(IV) G — * M 

(M6) 

CN6) 

(86) 

All such trees are made up of linear chains and k stars. A k 
star is k lines coming out of a dot point. 

* * " * • 

In laminar networks, e.g., (N6), reactions are coupled 
through intermediates, like C, F, and G. 

Note that in (M4) had the order of steps been reversed, 
we would have 

(l'j C + F 
A + B 

G + H 
C + D 

with the skeleton 

(M'4) 

(N'4) 

(S'4) 

But this is of course exactly the same as (N4). The C looked 
like an intermediate in (M4). It looks like a "catalyst" in 
(M'4) in the sense that it is first used up, then regenerated, 
but it is not. If they occur in the same batch vessel, the 
order of (I) and (II) is irrelevant. To have a true catalyst, 
the reaction steps must be coupled in such a way as to de­
velop a loop in the skeleton. This means either C is regener­
ated in the same step, or steps are coupled through with two 
or more species including C (see below). 

Loops, Rings, Catalysts, Chain Reactions. An enzyme or 
a one-step catalyst leads to a loop in the S; e.g., 

( D A + B + E — - D + F + E (M5) 

A r 

9 

(N5) 

(85) 

If we add intermediate species in (M5) before the regen­
eration of E, we get rings in S, as in the Henry-Michaelis-
Menten mechanism, (S l ) , or in 

A + B + E (BE) 

(BE) ^^-f 
D + F + E (M6) 

(N6) 

(S6) 

We can keep on by postulating other intermediates in (M6) 
and get larger rings; e.g., 

A + B + E —»(BE)—* (K) —»- D + E + F 

(M7) 

( B E ) ^ (K)^ 

(N7) 

<S7) Q 
Thus, essentially the same mechanism can be made to 

lead to a sequence of rings 

tf-o&. •• O" (S7') 

by assuming, e.g., shorter and shorter lived "transient 
states" in sequence. The crucial thing in (S7') is the occur­
rence of a single ring (by a "ring", it is meant a closed skel­
etal region with no lines inside; for example, 
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is a ring, but 

consists of two rings), corresponding to the occurrence of 
one enzyme. 

This expansion of a skeletal region into a sequence can 
occur in tree portions as well; e.g., 

{><• > <• >"^<~-} « 
with 

(S8) 

To generate a sequence corresponding to basically the 
same type of mechanism, one inserts more and more dots 
into a given skeletal line. 

Chain reactions also lead to rings. In fact, the action of a 
chain propagator in a two-step chain is similar to that of a 
catalyst. 

In the original chain reaction 

(M9) 
(I) 

(H) 
OVR 

H + 
C2H5 + 

C2H4 + 

C2H4 

(H) 

/ 
C2H 

C2Ri -
H2 -

H2 

6 

*" C2H5 

—*• C2H^ "•" H 

-*" C2H6 

(C2H5) 

\ 
H2 

<o 

(N9) 

(S9) 

Multiple rings can arise in multiple step chains, e.g.. 

(I) 

m) 
(m) 

Br + H2 —<- HBr + H 

H + Br2 —* HBr + Br 
H + Br —>- HBr 

(MlO) 

(HBr) 

(NlO) 

(SlO) 

This example illustrates how it may be difficult to trace 
through a network, while the topological relationships of 
reaction steps are very clear in the skeleton. 

If chain initiation and/or termination steps are added to 
the chain mechanism, we may get additional petals (loops) 
or stems on the flower patterns like (SlO). 

For example, if we add 

(IV) 2Br Br, 

(S 10) becomes 

(MlO') 

(SlO') 

because we have one more reaction line within the same line 
block. 

If chain termination leads to a product species outside of 
the chain line block, we get a stem in S, e.g., the C1H6 ter­
mination of CH3 radicals in (M3), (N3), (S3). 

Branched (explosive) chain reactions have similar S's to 
chain reactions: a flower with one or more stems. 

Enzymatic Reactions with Inhibition. We already re­
marked that simple enzyme mechanism skeletons are simi­
lar to chain reactions [see (N9), (S9) vs. ( N l ) , (S l ) ] . 

Inhibition steps are similar to chain termination ones and 
introduce stems. 

Competitive inhibition 

(I) E + S —»• (ES) 
(E) E + I — • (EI) 

(DI) (ES) — E + P 
-S 

•I 

(Mil) 

(Nil) 

(SU) 

Noncompetitive inhibition 

(I) E + S —* (ES) 
(E) (ES) —>- E + P 

(EI) (ES) + I —»• (ESI) 
(IV) E + I —«- (EI) 

(M12) 

(N12) 

(S12) 

If we add to (M 12) a step (ESI) — (EI) + S, the stems 
in (S 12) get tied together. Also, a new petal forms 

(Sl?) 

More examples from organic and biochemical pathways as 
well as mechanisms will be found in later sections. 

We noted that the overall rate law will depend on the 
skeletal type as will the steady state solutions and their sta­
bilities. While, e.g., (S l ) leads to a "saturating" rate law, a 
tree branch leads to a rate uniformly increasing with reac-
tant concentration. 

We turn now to the problem of finding all the possible 
mechanisms or pathways with the given number p of reac­
tion steps and the allowed numbers of species. Clearly the 
first step in this, and the complementary problem treated by 
Lee and Sinanoglu3 of finding all {N} of a given OVR, is to 
find all the skeletons of given p. 

IV. Skeletons Arising from a Given Number p of Reaction 
Steps 

For a given p £ {1, 2, 3, 4 , . . .}, networks possible may be 
many, but the skeletons are few. 

We display all the JSJ with p = 1, 2, 3 in Table I, and 
with p = 4 in Table II. Recall that each S is for many net­
works JNJs, some laminar, some turbulent. 

There are No.jS,,) = 2, 3, 11, 30, . . . skeletons for p = 1, 
2, 3, 4, . . . . 

In drawing the skeletons of p + 1 it is convenient to gen-
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Table I. All Skeletons of P G 11, 2, and 3 Table II. All Skeletons with p = 4 
Skeletons {Sip 

1 

2 

—• 9 

^' 1<0 
of7 ) 

[<3> 

erate first all those that can be obtained from those of p by 
adding one more stem, one more loop, etc. 

Having all skeletons for a given p, we can then expand 
each S into its networks, first laminar, then turbulent. That 
procedure will be demonstrated in other papers.3 Here the 
writer will concern himself more with the problem of find­
ing the number of species, networks of a given S can have. 
We shall find strongly restricting relations between the 
number of species possible in a mechanism or pathway and 
the number of steps postulated. Clearly this would provide a 
useful guide in coming up with plausible mechanisms or 
pathways for an overall synthesis or observed rate law. 

V. The Species Count. Internal Species, External Species 

Given only the number of steps p desired in a mechanism 
or pathway, there are a finite and quite small number of to­
pological skeletons as shown in Tables I and II. In fact most 
mechanisms and quite a few organic syntheses involve p = 
2-6 steps. More steps are fairly rare. 

To go from an S to an N, each dot point of S must be ex­
panded into all possible line blocks. The first and very gen­
eral limitation on the possible number of species in all |N) 
that would have the same S,, comes therefore from the num­
ber of dot points, 7, in Sp. 

To find p(<r), a step number vs. species number, we have 
the sequence 

P — * y — ^ C T (2) 

i.e., we need to find y first, given the p, and then find the a. 
Also we note that a total is made up of internal species, o\nU 
and external ones, <rcxt. 

^ = crlnt + a6Xt (3) 

Definition: Internal species (mole lines) have both ends 
on wiggly lines in N (reaction line in S). External species 
have only one end on a wiggly line in N. The other end is ei­
ther free or on a species vertex. 

Examples: (1) In (M9), internal species (int) = JH, 
C2H^); external species (ext) = (CiH4, C^H6, Hi|, a = 5 = 
2 + 3. 

(2) In (MlO), int = (none!, ext = (H, Br, HBr, H2, Br2), <x 
= <7CX, = 5. Note that if we exclude step III, we get int = 
(H, Br); ext = (H2, Br2, HBr). 

(3) In (Nl) (laminar case), int = ((ES), E), ext = (S, P), 
fftotai = 4, but in (NIt) (turbulent version of (Nl)), we get 
int = (none), ext = (S, P, E, (ES)), though <rlolai = 4. 

Remark 1: External species appear in the OVR, while in­
ternal ones do not. Enzymes, intermediates, and fully used 
up precursors are internal species. 

Remark 2: Whether it be in a mechanism or in a synthe­
sis, one would like to keep the number of steps, p, and/or in­
ternal species (and by-products), hence a, to a minimum, 
for economy. In designing syntheses or in postulating mech-

^ Vc 

w Y 

[•€» ] 
%=* 

H 
C ^ O 

^ 

anisms it is important to know therefore the minimum and 
maximum possible <r's (and <7inl and (Text's) given the p. 

VI. Number of Species Line Blocks, 7, Given the Number of 
Reaction Steps, p 

Line blocks in N are dot points in S. Reaction lines in S 
have dot-point ends. Given the p lines, there is only a cer­
tain number, 7, of dot points possible in any skeleton S„. 
The 7 is given by the following general result obtained by 
this writer. 

Theorem I: In a skeleton S made of p lines, the number 
of dot points is 

y = p - r + 1 (4) 

where r = the number of rings in S. 
This theorem is similar to Euler's theorem relating the 

numbers of faces, corners, and edges of polyhedra (see, e.g., 
the book on elementary topologylla and also ref lib). Al­
though more rigorous and elegant proofs may exist in math­
ematics, we give here a simple proof in the form of several 
basic steps which give some insight into the skeletons. 

(a) Consider any S stripped first of its loops, i.e., put 

and multiple lines, i.e., put 

(b) Then any stripped S is made of only trees and larger 
empty rings (i.e., rings of three or more dots), (c) Any tree 
is made up of linear segments 

•, etc. 

and k stars 

• * 

(d) A linear segment has 7 = p + 1. Any k star has 7 = k 
+ 1. (e) Everytime we join a line segment and a star at a 
dot, we loose one dot, so we still get 7 = p + 1. (f) When a 
segment of / lines (7 = / + 1) is turned into a single ring, 
one dot point is lost, hence 7 —» /. Thus for r separate rings 
in S, r dots are lost, (g) Next one considers how trees and 
rings and rings and other rings are joined together (e.g., 
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making a ring by adding a p, segment's two ends to a ring, 
we loose two dots and gain one ring and p, lines). With all 
such junctions, the result up through (f) remains intact, 
namely 7 ' = p' — r1 + 1. (h) Adding now the loops and 
multiple lines back on, p is increased by one for each such 
addition, but so is r. Thus 7 remains 7 = p — r + 1. 
(Q.E.D.) 

Examples: 

(1) (S3): p - 3 , r - 2 , 7 - 2 

Table III. The Four-Step Skeletons by Ring Number Class 

r 

0 
1 
2 
3 
4 

P = 

7 

5 
4 
3 
2 
1 

= 4 

No. of 
skeletons 
No. I Sp \ 

3 
9 

11 
6 
1 

(2) Flower: p - 5 , r = 5, 7 = 1 

(3) /3 = 20, r = 7, 7 - 1 4 

Remark: It is interesting to note right away that the 
more rings and loops for given p. the less the 7, hence the 
smaller the a. We will note below that in turn, the more en­
zymes, the more rings. 

Classification of Skeletons. The y(p) eq 4 allows us to 
classify the skeletons. 

With fixed p, each r defines the r-ringed class of skele­
tons S(p,r). 

All skeletons in the same r-ring class have the same 7, 
but not all skeletons with the same 7 are in the same r-ring 
class. 

Corollary to Theorem 1: For given p, there are p + 1 
classes (ring number classes) 

with 
r (E {0, 1, 2, 3, . . . , 0} 

Y e {p + 1, p, p - 1, p - 2, . . . , 1} 
(5) 

Examples: The p = 4 skeletons of Table II result in 
Table III. 

We note that the number of skeletons vs. r goes through 
a maximum, the most possibilities being around the mid­
point, i.e., r « p/2. 

On the other hand, the least number No.)S„| is for r = p, 
i.e., the flower pattern. We will see a special significance of 
this case for biochemical pathways (see section X). 

It is also interesting to classify the skeletal sequences, 
e.g., (S8) and (S'7), which had special mechanistic signifi­
cance. 

An r-ring skeletal sequence is generated, one ring at a 
time, by enlarging just that ring, giving a subsequence with­
in the fixed r increasing p sequence. For example, (S8) is a 
no star, r = 0 subsequence 

{r = 0 ; p = 1, 2, 3, . . . } 

Other subsequences within (r = 0, |pj) would be obtained 
specifying numbers of k stars and k's. Similarly for (S'7), 
the J r = 1; p = 1, 2, 3 , . . .| subsequence. 

VII. Possible Numbers of Species in a Network Given the 
Number of Reaction Steps 

For any network we found the possible numbers of line 
blocks given the p. (The p —* 7 problem.) 

To find the number of species mole lines and of species, 

a, given the p, we must find the number of species w in each 
line block. 

A dot point of S may represent different size line blocks. 
Definition: The weight d> of a dot point of S is the num­

ber of species in the corresponding line block of N. 
We have when N —»• S 

for example 
0 - 3 

S" 

<s « 4 

s" 

N 

a t - 4 

yf 

(6) 

(7a) 

(7b) 

(7c) 

(7d) 

(7e) 

N 
All the JNJ in eq 7 have the same S = 

Uf) 
The strictly laminar cases (7a-c) have different weights Ci. 
Cases in (7c and 7d) have the same weight, though their 
N's are different, one laminar, the other turbulent. 

We have the many-to-one mappings 

{{N}} — {Sa} (8) 

with S"' = weighted skeleton. 
The weights in an S" add up to the total species count a 

2 - (J). = a (9) 

The least number of species mole lines occurs for some 
laminar N, but not the least number of species. 

There are many more possible types of line blocks to con­
sider in the turbulent case. However, though the species 
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mole line number can then increase quite a bit, the species 
count remains in the same range as laminar. 

Given the number of steps p, we now find the maximum, 
(rma„ and the minimum, <rmin, number of species possible. 
These will be obtained from the laminar case. We shall then 
show that if the network is made turbulent (same skeleton) 
in any way possible, <rmax is still the maximum, but crmjn is 
lowered. Also more species can become external. 

More important than turbulence for the species count 
problem is the types of elementary reaction steps allowed. 

Types of Elementary Steps. In a mechanism, elementary 
steps correspond to molecular processes. The steps therefore 
are uni- or bimolecular. 

-i. p I / 
(10a) 

(N) 

D \ / (10b) 

(M) (N) 

Three or more body collisions 

> 
are unlikely. 

In organic synthetic pathways, known reactions are used. 
There are 20-25 such reactions most commonly occurring. 
A list of syntheses reveals steps by and large of the eq I Oa 
and 10b type. In fewer cases, steps of type 

A + B — • T> + E + F (11) 
are seen. 

We will develop the theory for all steps being of the types 
in eq 10a and 10b. Each wiggly line end has one or two 
species mole lines, no more (the "step complexity index" = 
n = 2). This covers almost all that is of practical interest. 
(The writer extended the work to n = 3, but omits it. Added 
tedium is far more than added benefit.) For organic path­
ways it is simpler to break up such n = 3 or more steps into 
two or more « = 2 steps using an actual (mechanistic) or 
hypothetical intermediate as in 

n = 2 
A + B -
X —<- E 

D 
F 

+ X 

combined step (n = 3) (110 

A + B — - D + 
n = 3 

E + F 

Weight of the k Stars of a Skeleton. Consider a skeleton 
S, e.g.. 

(12) 

with the dot points labeled for convenience. 
If we draw a tiny circle around each dot point, we find 

the k value of each k star; for example, in (12) 

fea = 3, feb = 4, K = 2, fed = 2, 

5, fe, = 1, = 1 (13) 

For convenience of presentation we state this as a lemma: 
the sum of the star k values of a skeleton S is twice the 
number of steps p, i.e. 

E k. = 2p 
<»i 

(14) 

Proof: Stars of S are made by cutting each line in two. 
Counting star lines we double count the lines. 

Theorem 2: The possible weights \uk] of a k star dot 
point in S are 

0Jk = k - 1, k, k, k + 1 for k > 2 
(for k = 1, W1 = 1, 2 only) (15) 

if the dot point represents laminar line blocks ("turbulence 
index" = 0) or turbulent line blocks with turbulence caused 
by arrow directions only (turbulence index = 2). 

Proof: The only types of laminar line blocks possible for 
a k star are 

* - O ^ 
(A-star)s wk=k 

(16a) 

(16b) 

(16c) 

and 
wk = k + 1 

(16d) 

rat = k (k = even only) 

(see "note" to theorem 2). 
The linear line blocks segments with zero (mechanism 

16a), with one (mechanism 16b), and two (mechanism 16c) 
external species lines, and a species ringed line block (k star 
giving fc-membered species ring) (structure in 16d) are the 
only possibilities. (Q.E.D.) 

For one stars k — 1 = 0 is not possible, since all wiggly 
lines should end on a species line. ( ) Thus for one 
stars o>i G | 1 , 2}. 

Note 1. Putting possible reaction arrows on the wiggly 
lines we see that, for (16d), k = odd, an odd-membered 
species ring cannot be laminar, but will at best have one 
turbulent species kink, as at least two arrows will meet. But 
this does not change the number of species uk = k. 

(16d') 

Note 2. Turbulence Index = 2 Cases. This means species 
vertices with two mole lines exist. Such are caused by two 
arrows meeting. 

(17) 

(turbulence index SE T = 0) (turbulence index = T = 2) 
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These arrow turbulences do not change the weights in eq 
16; so eq 15 is for 2 turbulence as well as laminar. (Q.E.D.) 

Weights for Turbulence Index > 2. Different type line 
blocks arise if more than two species lines meet in a species 
vertex. A skeletal k star may represent then, e.g., 

T - 3 / 

=v = (k - 1) - 1 - 3 
(16t) 

SV - (fc - 1) - 3 - 1 av-(fc - 1) - 2 = 2 

Each of (13t) can have more external species added to 
bring the total back up to (Zc - 1); e.g., by 

/>f\ (16f) 

OV = (k ~ 1) - 1 + 1 - (k ~ 1) 

Formation of a species vertex has decreased the number of 
distinct species by one, but addition of a new external 
species line has increased it back up by one. Thus we get an 
addendum to theorem 2. For a k star dot point with T > 2 
turbulence allowed, the weights can be 

<V S {1, 2, 3, k - 1, k, k + 1} (k > 2) (18) 

Thus the maximum ŵ  has remained at k + 1 in the most 
general network, but the minimum «* can be as low as 1 
(this for T = k). 

For one stars again wi £ jl, 2) in the general turbulent 
case. 

Maximum Number of Species Possible. From eq 9 and 15 

<W = E ^ m a t = £ (* + D (19) 

The sum is over all dot points of S. (2s means the sum of 
the value that follows 2 for each dot point.) Thus one part 
of the sum 2s(& + 1) becomes 

Z(D - (20) 

since this term amounts to counting the dot points of the 
skeleton S. Using also eq 14 

or using y = p — r + 1 

2p + y 

= 3p - r + 1 

(21) 

(21') 

Equation 21 applies to all networks (laminar; turbulent; r = 
0,2 ,3 , . . . ) . 

Minimum Number of Species. For laminar and their iso­
morphic 

T = 2 turbulent networks (most common case), from theo­
rem 2 

^ u = £ ( * - ! ) + Z *(D = 2p - y + f (22) 
(IS=I) 

( a l l dots 
inc luding fe = 1) 

K i n = P + r - l + / > 

(p + r - 1)} for T € { 0 , 2} (22') 

CF 

12 
Il 

IO 
9 
8 
71-
6 
5 
4 
3 
2 

max* 
a>nnx(r=l) % 

r=2) 

0 « ^ 

Figure 2. The a-p, p(o-), plot. The plot gives the range of the number of 
species possible in a mechanism of p reaction steps. Conversely, given 
the number of chemical species a, one can read off the number of steps 
any possible mechanism would have. These ranges show the depen­
dence also on the number of catalysts or feedback loops (number of 
rings r ) in the mechanism. For a given p or a only the intersections 
with <rmax, ffmi„ lines which yield integers are the solutions (for the a = 
6 case shown circled). 

where f== 2(A=I)*(1) is the number of one stars, i.e., free 
ends in the skeleton. For any S with p we have/ G (0, 1, 2, 
...,P). 

For the maximal turbulence case, from the addendum to 
theorem 2, eq 17 

^mHr = km3X > 2) = Z ( D = y 

or 
^ 1 n Hr > 2) = p - r + 1 (221) 

If we have a tree S, i.e., r = 0 (as in most organic syn­
theses), or r = 1, eq 22' and 22t give the same or very close 
Cmin- As r > 2 cases are rare, we shall take eq 22' as an in­
dication of (Tmin to be expected for an S in general. 

The Range of a and Average a. From eq 22 and 21, the 
average a(p) is ( for /« 0) 

a = 2p (23) 

With the range (o-max
 - cmin) = Ac (for/small) 

ACT = 2y 

ACT = 2(p - r + 1) (24) 

In the biochemically important case of p 
section, around theorem 4) we have 

cr(p 

r (cf. last 

r )6{2p - 1, 2p, 2p + 1} « 2p (25) 

So, in that case, we predict from the number of reaction 
steps the number of species involved almost with certainty! 

The Species-Reaction Step Plot. Figure 2 shows a a{p) 
plot. For each skeletal r-ring class [given (p, /•)] there is a 
(ffmin. "max) range. For each /--ring skeletal sequence (given 
r), there is a triangular region (e.g., shaded area for r = 2) 
of possible (<r, p) values. 

In the plot, for r = 1, 2, . . . , we added a 2 to <rmin, so as 
to eliminate "unproductive networks" like 

(26a) 

(A B —* C 
OVR 0 

A) 
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With 2 added to such am\n, we start with instead, e.g., 

A + 
B —* 
C — 

D - B 
F + C 
A 

(26b) 

OVR D 

The 
Cmax lines in the plot apply to all networks, the (Tmjn 

lines to laminar and T = 2 turbulent. For T > 2 turbulent, 
all a below the crmax are possible. 
VIII. Reaction Steps Possible Given the Number of Species 

The inverse question is of much practical interest. One 
may have an idea of the number of species, a, to be consid­
ered (number of species in the OVR plus intermediates, cat­
alysts, precursors). Then, how many reaction steps are pos­
sible in any mechanism or synthesis; i.e., p(a) = what? 

The possible p are read off from Figure 2 along a a line. 
For example, in the figure, for a = 6, we get p = 2, 3, 4, 5 if 
r = O; p = 2, 3, 4 if r = 1, and p = 3 if r = 2, and that is all 
(for T < 2). We can narrow down the possible p more if we 
know how many species out of the a = 6 are catalysts, or if 
we know how many catalytic or chain reaction loops would 
be reasonable. These numbers, essentially measured by r, 
can only be, we see also from Figure 1 for p = 6, r £ |0, 1, 
2). If we require r = 2, then p = 3 is the only possibility. 

Knowing the number of steps (and r and a) it will surely 
be much easier to guess the mechanism or synthetic path­
way for the stoichiometry (and OVR) at hand. 

In fact, the search for possible mechanisms is narrowed 
even further when we look at the possible numbers of inter­
nal and external species within a fixed a = <Tint + <rext-

IX. Possible Numbers of Internal and External Species 

Going through the derivations of the <r(p) results above, 
we see that, in 

+ CT0 (27) 

for laminar networks, in fact, 

tfmin = O'min.int = ^P ~ Y 

<W,ext = 2y 

, still with no turbulence r = O) 

2p - Y ^ crint S 2 p - yodd 

/ + 0 s <r„t £ 2y 

(28) 

(29) 

(30a) 

(30b) 

where y = 70dd + Yeven, Todd = number of dot points with 
odd k stars in the skeleton. Also a a is made up of only cer­
tain combinations (subject to a-ml + o-ext < 2p + 7) of amt 
and (Text within their ranges (trext = 27 — 2 goes with (T11n = 
2p — 7 + 1 and correspondingly for the others). 

Equations 28 and 29 follow easily from eq 16. The 7odd 
occurs in eq 30a because only for even stars can we get 
species rings (o)/t = k case, eq 6) still retaining laminarity. 
The odd k stars cannot lead to laminar species rings with 
any arrow arrangement. Thus (2p + yeven) is the most for 
internal. (Q.E.D.) 

With turbulence, internals decrease, externals increase. 
For example, for each 

(3D 

we get (Tint ~* (Tint - 1 while (Text ~* Text + 1. So 

CJ1n,
4 G {0, 1, 2, . . . , 2p - y] (32a) 

^xt 1 G \f,f + 1, . . . , 2p + y} (32b) 

such that in each (<Tint, aext) combination 

y - 0 ^ t + Oext = CT S 2p + Y (32C) 

With these a-mt, o-ext ranges and Figure 2, possible types 
of p step or a species networks are much narrowed down. If 
in addition to know the OVR type (like A + B + C - ^ E + 
F, etc.) we know the aext (all externals appear in the OVR). 
Then a > <rixi. Choosing such a a, we get the p range. Or if 
we select a p, we have to see from Figure 2 and eq 32, if it is 
compatible with (rext, i.e., does o-ext fall in the possible Aa 
and Ao-ext ranges for this p. 

Possible Overall Reaction Types Given p or a. Deducing 
the possible o-ext from (p, r, a) we have also the possible 
types of OVR. If (T6Xt is in the laminar range, the stoichio­
metric coefficients in the OVR are unity. Thus, e.g., for aext 

(T = 0) = 5, the only possibilities are 

or 
B + C + D + E 

A + B —»• C + D + E (33) 

(reverses are the same). 
Writing <reM = ffextL + <̂ extR. OVR "reactants" on the 

left, "products" on the right, all laminar OVR's are ob­
tained from the partitions of the integer aen (e.g., 5 = 4 + 
1, 2 + 3). The number No. of such OVR is 

No. {OVR} = ^ i (for aext = even) 
it 

No. {OVR} = %xi ~ -''(for crext = odd) 
Z 

(34) 

The same applies for the turbulent, but the o-ext given 
must be in the turbulent Ao-ext range and for the desired tur­
bulence index T. For example, T = 3 means, the highest 
stoichiometric coefficients occurring will be 3. Then in ad­
dition to eq 33 we will have OVR's like 

A + 2B—»-3C + D + E (331) 
etc. 

Once actual chemical species are assigned, the possible 
stoichiometric coefficients are of course very much nar­
rowed down or determined. 

Clearly now one can also work backward from the OVR 
to (Text, to jo-), to |(p,r)j, to all skeletons, to all possible net­
works, finding thus all possible mechanisms or pathways. 

X. Some Examples and Remarks on Organic Vs. 
Biochemical Synthetic Pathways 

Example 1: (example supplied by Dieter Marquading) 
(organic pathway) 

+NaOH +HjSO< 

-CH3OH ^ ^ - N a H S O , 

CN "CCOCH3 CN "COONa 

+(CH3J2CHCH=NCH2C6Hi 

CN COOH 

CR 
O 

N*=»C^—CHCH(CHa)2 

NHCH2C6H5 

A C I A N C H 2 C 6 H 5 (M13) 

Q CH(CH3)2 

(N13) 
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Here all vt = 1, a strictly laminar N, with 

P = 4 
r = O; / = 2 
y = p - r + l = 5; yodd = 2 

From eq 30 we expect 

3 ^ a l l t s 6 

subject to 5 s g < 13 

2 ^ a e x t s 10 

In the case at hand, we have ff;nt = 3 = <7min,int and <rext = 7 
which check. 

Example 2: (example supplied by Ivar Ugi) (organic 
pathway) 

CH3 

-K)OCl2 

-CH3Cl 

H3C O CH: 

H3C^S) 
+ P(OCH3), 

CH3 

Jb-COCl -CH3Ci 
H 3 C - C O 0 ^ ^ 0 

OCH3 OCH3 

CH3 

H 
0^-P(OCHa)3 

m , — C O ^ V / 
+HOC2H3 

0-P . 

I 
OCH3 

CH3 

CH3 .C-COOH CH3 .CH 
X c <v o ^ co v° 

OCH3 OC2H6 OCH3 OC2H5 

(M14) 

(N14) 

(S14) 

Here 

P = 5 

r = 1; / = 2 

y = p - r + l = 5; yodd = 2 

From eq 32 we expect 

5 ^ a ^ 15 

a l n t G {0 to 5 to 8} 

a e x t e { 2 to 10 to 15} 

Here amt = 4; <rext = 7; <r = 11 which check. 
Example 3: (biochemical pathway). Electron transport 

chain 

(I) metabolite + DPN —* 
oxidized metabolite + DPNH2 

(II) DPNH2 + FP —»• DPN + FPH2 

(III) FPH2 + cyt c Fe3+ —»- FP + cyt c Fe2+ 

(IV) cyt c Fe2+ + O —»• cyt c Fe3+ + H2O 

OVR metabolite + O -*~ oxidized metabolite + H2O 
(M15) 

(N15) 

2319 

<J!5> (S15) 

where we get 

p =A; r = 3; / = O 

y = p - r + l = 2; yoii = O 

The case being laminar, we expect 

6 s (J111 ^ 8 

such that 6 < <r < 10 

O s aext ^ 4 

In fact we have ami = 6 = trmin,int; <rext = 4 = <Tmax,ext; <* = 
10 = <rmax. 

Example 4: (biochemical pathway). Oxidative phospho­
rylation 

(I) X-OH + inorg phosphate —* X-O-(P) + H2O 
(II) X-O-(P) —- X2+-O ~ (g) + (2e_) 
(III) X2+-O ~ (g) + ADP —*• X2+-OH + ATP 
(IV) X2+-OH + (2e_) — X-OH 

OVR inorg phosphate + ADP ATP + H2O 

(M16) 

(N16) 

(S16) 

with 
p = 4, r = 2 

7 = p - r + l = 3 ; 7 o d d - 0 ; / - 0 

The case is again laminar, so from eq 29 

5 £ a u t s 8 

subject to 5 < a < 11 

O £ a e i t £ 6 

which check with trim = 5 = <xmjn]int, ffext = 4, and <x = 9. 
(Figure 2 shows (T G {7,8,9, 10, 11} for p = 4 and r = 2). 

Many more turbulent or laminar examples can be given. 
One thing these show is the following. 

P + 1 (35) 

Remark 1: Organic syntheses have almost always tree 
skeletons (no rings or very few, r « O) 
Moreover, in a laboratory synthesis, we want and have 
mostly linear tree branches, not stars 

as k > 2 stars 

~k 
etc., would mean more products coming off, decreasing the 
yield of the target. 

The straight chain tree branch aspect of laboratory syn­
thesis is due also to the batchwise operation. Syntheses are 
carried out in a succession of batch stages. 

In industrial syntheses, in the continuous operation plant, 
we would have some products recycled, more catalysts used, 
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etc., getting more rings and loops in the skeleton. That is, 
increase of yield, continuous operation, and regulation and 
control of steady states requires pathway with rings rather 
than trees. 

Remark 2: In fact, nature has designed the biochemical 
machinery such that the pathway skeletons have often the 
maximum possible number of rings. Examples above al­
ready show this contrast between biochemical and laborato­
ry organic pathways, even though we omitted the enzymes. 
If to some or all of the elementary steps in the biochemical 
cases we add the enzymes, we get the maximal ring flower 
patterns, e.g., (M 15) becomes (with «max, reaction step 
index going up to 3) 

^ with enzymes 

The example (M 16) becomes 

1 with enzymes 

(SB15) 

(SB16) 

This is general, and we state it as a theorem. 
Theorem 4 {Theorem of Enzymes): Whenever an en­

zyme is added to a reaction step, that reaction line in the 
skeleton becomes a loop (sufficient, but not necessary) (this 
is not the only way a loop can arise of course). 

Proof: Consider a wiggly reaction line 

(S) 
(N) 

e.g., A - C . With enzyme E added, A + E — C + E, and 

(L 
(N) (S) 

Corollary: As biochemical pathways have enzymes on 
most of their steps, their skeletons are almost always flower 
patterns. 

Proof: y = p — r + 1; if each step has an enzyme, by the­
orem 4, reaction lines become loops, therefore p = r. Then 
y = 1 and we get a flower with p petals 

In later papers, we hope to explore the rate law features, 
steady state, and stability aspects of skeletal patterns. 
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